Stratospheric Circulation in the Southern Summer/Northern Winter 1980–81: Behavior of Zonal Waves 1–10

1984 ◽  
Vol 41 (14) ◽  
pp. 2179-2188 ◽  
Author(s):  
Wen-Bi Yu ◽  
John L. Stanford
1949 ◽  
Vol 41 (12) ◽  
pp. 551-554 ◽  
Author(s):  
F. A. Coffman ◽  
H. A. Rodenhiser ◽  
J. W. Taylor

2021 ◽  
Vol 14 (9) ◽  
pp. 638-644
Author(s):  
Brian Zambri ◽  
Susan Solomon ◽  
David W. J. Thompson ◽  
Qiang Fu

2017 ◽  
Author(s):  
Anne R. Douglass ◽  
Susan E. Strahan ◽  
Luke D. Oman ◽  
Richard S. Stolarski

Abstract. Constituent evolution for 1990–2015 simulated using the Global Modeling Initiative Chemistry and Transport Model driven by meteorological fields from the Modern Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) is compared with three sources of observations: ground based column measurements of HNO3 and HCl from two stations in the Network for Detection of Atmospheric Composition Change (NDACCC, ~ 1990–ongoing); profiles of CH4 from the HALogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS, 1992–2005); profiles of N2O from the Microwave Limb Sounder on the Earth Observing System satellite Aura (2015–ongoing). The differences between observed and simulated values are shown to be time dependent, with better agreement after ~2000 compared with the prior decade. Furthermore, the differences between observed and simulated HNO3 and HCl columns are shown to be correlated with each other, suggesting that issues with the simulated transport and mixing cause the differences during the 1990s and these issues are less important during the later years. Because the simulated fields are related to mean age in the lower stratosphere, we use these comparisons to evaluate the time dependence of mean age. We use these relationships to account for dynamical variability when determining decadal scale trends in constituents and mean age. The ongoing NDACC column observations provide critical information necessary to substantiate trends in mean age obtained using fields from MERRA-2 or any other reanalysis products.


2006 ◽  
Vol 19 (16) ◽  
pp. 3863-3881 ◽  
Author(s):  
E. Manzini ◽  
M. A. Giorgetta ◽  
M. Esch ◽  
L. Kornblueh ◽  
E. Roeckner

Abstract The role of interannual variations in sea surface temperatures (SSTs) on the Northern Hemisphere winter polar stratospheric circulation is addressed by means of an ensemble of nine simulations performed with the middle atmosphere configuration of the ECHAM5 model forced with observed SSTs during the 20-yr period from 1980 to 1999. Results are compared to the 40-yr ECMWF Re-Analysis (ERA-40). Three aspects have been considered: the influence of the interannual SST variations on the climatological mean state, the response to El Niño–Southern Oscillation (ENSO) events, and the influence on systematic temperature changes. The strongest influence of SST variations has been found for the warm ENSO events considered. Namely, it has been found that the large-scale pattern associated with the extratropical tropospheric response to the ENSO phenomenon during northern winter enhances the forcing and the vertical propagation into the stratosphere of the quasi-stationary planetary waves emerging from the troposphere. This enhanced planetary wave disturbance thereafter results in a polar warming of a few degrees in the lower stratosphere in late winter and early spring. Consequently, the polar vortex is weakened, and the warm ENSO influence clearly emerges also in the zonal-mean flow. In contrast, the cold ENSO events considered do not appear to have an influence distinguishable from that of internal variability. It is also not straightforward to deduce the influence of the SSTs on the climatological mean state from the simulations performed, because the simulated internal variability of the stratosphere is large, a realistic feature. Moreover, the results of the ensemble of simulations provide weak to negligible evidence for the possibility that SST variations during the two decades considered are substantially contributing to changes in the polar temperature in the winter lower stratosphere.


Sign in / Sign up

Export Citation Format

Share Document